
2026/01/22 21:00 1/10 Serveur de cache APT / cron-apt

Cyrille BIOT - https://cbiot.fr/dokuwiki/

Serveur de cache APT / cron-apt

Script d'auto configuration d'un serveur de cache pour APT, côté serveur et client. Installation
d'un cron-apt récupérant les mises à jour la nuit et installant automatiquement les mises à
jour de sécurité des repo. présentes sur votre système. Gestion de la configuration aussi bien
niveau installation client / serveur.

Ce script peut être installé via un compte root (base debian) mais également via sudo (base ubuntu,
mint…). Il est écrit en python3 et doit être lancé avec les droits administrateur.

Utilité dans le cadre de la gestion d'un parc de PC. Un PC est défini comme serveur et sera le seul à
utiliser la bande passante de l'Internet pour récupérer les mises à jour. Les clients se connectent,
eux, via ce PC uniquement pour apt et donc utilisent le réseau local. Le parc de client peut être
hétérogène (au niveau de la distribution mais aussi de leurs versions : Debian Stable / SID / Mint /
Lubuntu / Mandriva …) du moment qu'ils utilisent des paquets au format Debian (.deb).

La mise à jour du cache se fera depuis le serveur, mais également dès l'accès à ce serveur par un
client.

Apt-Cacher NG est un mandataire de cache pour le téléchargement de paquets depuis des dépôts de
logiciels dans le style de Debian (ou d'autres types).. Le principe est qu'une machine centrale héberge
le mandataire pour un réseau local. Les clients règlent leur configuration d'APT pour télécharger sur
cette machine. Apt-Cacher NG conserve une copie de toutes les données utiles transitant à travers lui
et, quand une requête similaire est faite, la copie en cache des données est délivrée sans être
téléchargée à nouveau.

Les avantages d'APT-CACHER-NG

apt-cacher-ng est un gain de temps
apt-cacher-ng limite l'utilisation de la bande passante
apt-cacher-ng permet d'intégrer des images ISO (DVD) et des importations de cache apt

Configurations du script

Configuration, côté serveur

Last update: 2020/02/08 23:38 python:acn-py-installer https://cbiot.fr/dokuwiki/python:acn-py-installer?rev=1581205108

https://cbiot.fr/dokuwiki/ Printed on 2026/01/22 21:00

Installation du paquet :

apt-cacher-ng
cron-apt

Configuration, côté client

Le script

Ci dessus la version 2.0.0

Mais préfèrable de suivre la version du GIT : https://github.com/CyrilleBiot/scripts/

#!/usr/bin/env python
-*- coding: utf-8 -*-

""" Script d'installation et de configuration du serveur de cache apt
 apt-cacher-ng soit en tant que serveur (ajout du paquet sur le système
 soit en tant que client (cration d'un fichier de proxy apt)
 Possibilité pour les clients de choisir le port d'écoute du serveur
 Installation de cron-apt avec configuration spécifique
 pour installation automatique des mises à jour de sécurité des repo
 présents sur le système
"""

__author__ = "Cyrille BIOT"
__copyright__ = "Copyleft"
__credits__ = "Cyrille BIOT"
__license__ = "GPL"
__version__ = "2.0.0"
__date__ = "2020/02/05"
__maintainer__ = "Cyrille BIOT"
__email__ = "cyrille@cbiot.fr"
__status__ = "Devel"

import os, re, sys, platform
import nmap, subprocess, socket

def baseDebian():
 """
 Fonction permettant de connaitre le Systeme d'exploitant faisant tourner
le script
 Ou DEBIAN ou UBUNTU pour savoir si on utilise su ou sudo
 Retourne une variable de type string (admin)
 :return: admin soit 'debian' (root), soit 'ubuntu' (sudo)

https://github.com/CyrilleBiot/scripts/

2026/01/22 21:00 3/10 Serveur de cache APT / cron-apt

Cyrille BIOT - https://cbiot.fr/dokuwiki/

 """
 # Ubuntu ou DEBIAN
 if 'Debian' in platform.version():
 # Si DEBIAN, verif si root lance le script
 print('Vous utilisez un système Debian (su pour administration).')
 if not os.geteuid() == 0:
 sys.exit("Seul le root peut lancer ce script. Nécessite
privilèges administrateur.")
 distrib = 'debian'
 else:
 if not os.geteuid() == 0:
 print("Ce programme requiert un lancement via 'sudo'")
 sys.exit("Ce programme doit être lancé avec les droits
administrateur.\nUtiliser sudo LeScript.py")
 print('Vous utilisez un système non Debian (sudo pour
administration).')
 distrib = 'ubuntu'
 return distrib

def installPackage(package, debianUbuntu):
 """
 Fonction installant un package debian ou ubuntu
 :param package: le nom du paquet à installer
 :param debianUbuntu: soit 'debian' / soit 'ubuntu'
 :return: None
 """
 retval = subprocess.call(['which', package])
 if retval != 0:
 print("Le package {} n'est pas intallé.
Installation...".format(package))

 # Paramètres de l'install
 cmdInstall = ['apt-get', 'install', package, '-y']
 cmdUpdate = ['apt-get', 'update']

 # Adaptation système Ubuntu
 if debianUbuntu == 'ubuntu':
 cmdInstall.insert(0, 'sudo')
 cmdUpdate.insert(0, 'sudo')

 # On installe le paquet
 subprocess.run(cmdInstall)
 #subprocess.run(cmdUpdate)
 else:
 print('Le package {} est déjà présent sur votre
système.'.format(package))

 return None

def installServeur(ip, port,distrib):
 """

Last update: 2020/02/08 23:38 python:acn-py-installer https://cbiot.fr/dokuwiki/python:acn-py-installer?rev=1581205108

https://cbiot.fr/dokuwiki/ Printed on 2026/01/22 21:00

 Fonction installant le serveur de cache apt-cacher-ng
 :param ip: IP du Serveur
 :param port: interger port ACN
 :param distrib: Ubuntu ou Debian
 :return: None
 """

 # Installation du serveur
 installPackage('apt-cacher-ng',distrib)

 # Affichage Informations
 print("===")
 print("Le serveur de cache est dès lors opérationnel")
 print("Le port d'écoute est : {}".format(port))
 print("Page d'aministration : http://{}:{}/acng-report.html".format(ip,
port))
 print("Notez bien l'ip de votre serveur, elle vous sera indispensable
pour la configuration des clients.")
 print("L'IP du serveur est : {} ".format(ip))
 print("Indispensable : cette IP doit être FIXE (réglage sur votre BOX ou
serveur DHCP).")
 print("Cette machine est un serveur, mettre de ne l'arrêter. Les mises à
jour s'effectuant la nuit.")

 return None

def installClient(ipServeur,portACN):
 """
 Fonction installant un fichier de configuration apt pour les postes
clients
 Créer un fichier dans /etc/apt/apt.conf.d/ ayant pour nom 00aptproxyANC
 :param ipServeur: ip du serveur ACN
 :param portACN: port d'écoute du serveur ACN
 :return: None
 """

 # COnfig IP serveur dans un fichier de proxy APT
 msgApt = 'Acquire::http::Proxy "http://' + ipServeur + ':' +
str(portACN) + '";\n'
 print(msgApt)
 dirInstall = '/etc/apt/apt.conf.d/'
 fileName = '00aptproxyANC'
 fileLocInstall = dirInstall + fileName
 fichier = open(fileLocInstall, "w")
 fichier.write(msgApt)
 fichier.close()
 return None

2026/01/22 21:00 5/10 Serveur de cache APT / cron-apt

Cyrille BIOT - https://cbiot.fr/dokuwiki/

def portSelection(portACN):
 while True:
 try:
 portDefault = input("Utiliser le port par défaut 3142
(recommandé) ?. [Oui / Non] ")
 if portDefault.lower() == 'oui':
 print('Port Serveur {}'.format(portACN))
 break

 elif portDefault.lower() == 'non':
 try:
 portSelect = int(input("Saisir le port du serveur Apt-
Cacher-Ng. Entre 0 et 65 535. : "))
 if -1 < portSelect < 65536:
 print("Port sélectionné{}".format(portSelect))
 portACN = portSelect
 break
 except ValueError:
 print("Oops! Réponse incorrecte, ce n'est pas un nombre
compris dans la plage demandée.")
 except ValueError:
 print("Oops! Réponse incorrecte... Réessayer...")

 print("Installation client sur port {}.".format(portACN))

def ipRecuperation():
 """
 Fonction récupérant l'adresse IPv 4 de la machine
 :return: l'ip de la machine lançant ce script
 """
 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
 s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
 s.connect(('<broadcast>', 0))
 return s.getsockname()[0]

def ipTest(ip):
 """
 Fonction testant la validité d'une adresse IPv4
 :param ip: ip à tester
 :return: True si IP valide, False sinon
 """
 reg =
r"^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|
1[0-9]{2}|2[0-4][0-9]|25[0-5])$"
 if re.match(reg, ip):
 return True
 else:
 return False

Last update: 2020/02/08 23:38 python:acn-py-installer https://cbiot.fr/dokuwiki/python:acn-py-installer?rev=1581205108

https://cbiot.fr/dokuwiki/ Printed on 2026/01/22 21:00

def clientServeur():
 """
 Fonction déterminant s'il s'agit d'une installation de type Serveur ou
Client
 :return: Retourne une variable string soit client soit serveur
 """
 while True:
 try:
 choixInstall = input("Type d'installation (client/serveur) : ")
 if choixInstall.lower() in ['client', 'serveur']:
 print('Installation de type {}'.format(choixInstall))
 break
 else:
 print('Préciser : client OU serveur.')
 print('ATTENTION A LA CASSE. Pas de majuscule.')
 except ValueError:
 print("Oops! Réponse incorrecte... Réessayer...")
 return choixInstall

def portStatus(ip, port):
 """
 Fonction de scanne d'un port d'une machine en fonction de son IP
 :param ip: IP de la machine à scanner
 :param port: port à scanner
 :return: Retourne True si port ouvert ou False si port fermé
 """

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.settimeout(1) #
 result = sock.connect_ex((ip, port))
 if result == 0:
 message = str(ip) + ' : Le port ' + str(port) + ' est ouvert.
Possibilié de serveur ACN.'
 print(message)
 return True
 else:
 message = str(ip) + ' : Le port est fermé. Code d\'erreur de retour;
' + str(result)
 message += '. Pas de serveur ACN'
 print(message)
 return False

def chercherServeurACN(ip,port):
 """
 Fonction recherchant
 :param ip: IP du client lançant le scan, permet de trouver un motif
réseau
 :param port: port à scanner (port ACN)
 :return: retourne une liste contenant les IP possibles des machines
ayant port spécifié ouvert
 """

2026/01/22 21:00 7/10 Serveur de cache APT / cron-apt

Cyrille BIOT - https://cbiot.fr/dokuwiki/

 ipModele = ''
 listeHosts = []
 ipServeurACN = []

 # Création d'un motif pour le scan reseau
 ipSplit = ip.split('.')
 for i in range (0,3):
 ipModele += ipSplit[i] + '.'
 ipModele += '0'

 # debug
 print('=' * 40)
 print('Votre machine possède l\'ip {}.\r\nLe motif de scan sera donc :
{}'. format(ip,ipModele))

 # Scan reseau à la recherche de clients
 nm = nmap.PortScanner() # instantiate nmap.PortScanner object
 nm.scan(hosts=ipModele+'/24', arguments='-n -sP')
 for host in nm.all_hosts():
 print('--')
 print('Host : %s (%s)' % (host, nm[host].hostname()))
 print('State : %s' % nm[host].state())
 # Creation d'un mappage reseau
 listeHosts.append(host)

 # Sca, port ACN des clients
 print('=' * 40)
 print('Résultats du scan réseau : (True si port Apt-cache-server
trouvé.')
 # Pour chacune des machines du réseau, on teste le port d'ACN (par
defaut 3142
 for i in listeHosts:
 testPort = portStatus(i, port)
 # Si réponse True, c'est le serveur
 if testPort == True:
 ipServeurACN.append(i)
 message = 'Eventuel Serveur ACN.'
 else:
 message = 'Pas de port ACN ouvert'
 print(i, ' : ', testPort, '. ', message)

 return ipServeurACN

def validerIpServeurACN(listIp):
 """
 Fonction recupérant la liste des machines susceptibles d'être serveur
ACN
 Teste de cette liste pour valider ces IP ou les infirmer
 :param listIp: liste contenant les IP des machines écoutant le port ACN
 :return: IP de la machine sélectionnée comme serveur ACN

Last update: 2020/02/08 23:38 python:acn-py-installer https://cbiot.fr/dokuwiki/python:acn-py-installer?rev=1581205108

https://cbiot.fr/dokuwiki/ Printed on 2026/01/22 21:00

 """
 if len(listIp) == 0:
 sys.exit('Aucun serveur ACN de trouver. Merci de vérifier son
installation.\r\n'
 'Relancer ce script sur la machine serveur.\r\n'
 'Et sélectionner "Installation Serveur"\r\n')
 elif len(listIp) == 1:
 print('Serveur ACN possible : ',listIp[0])
 while True:
 try:
 ouiNon = input("Valider ce choix ? (Oui / Non) ")
 if ouiNon.lower() == 'oui':
 print('IP du serveur : ', listIp[0])
 ipServeur = listIp[0]
 break
 elif ouiNon.lower() == 'non':
 sys.exit('Revoir la configuration du serveur.\n'
 'Et relancer ce script.\n'
 'Aucune machine disponible dans le reseau
actuellement '
 'avec ce port d\'ouvert')
 except ValueError:
 print("Oops! Réponse incorrecte... Réessayer... [Oui / Non
]")
 # Valider l'ip unique
 else:
 print('Plusieurs machines pouvant être des serveurs ACN')
 print('Veuillez sélectionner une ip, merci :')
 for i in enumerate(listIp):
 print('Choix ', i[0] + 1, ' : ', i[1])
 # Installation client
 while True:
 try:
 ipServeur = input("Saisir l'IP du Serveur :")
 if ipTest(ipServeur) is True and ipServeur in listIp:
 break
 except ValueError:
 print("Oops! Réponse incorrecte... Réessayer...")
 return ipServeur

def installCronApt(distrib):
 """
 Fonction Recuperation des entrées des mises à jour de sécurité dans
 dans les divers sources.list possibles
 Et création d'un sources.list basé que sur ces entrées (security)
 Le fichier est propre à primtux. Donc si existe, on le régénère sinon
on le crée
 Et envoi mail sur root
 :param distrib: Ubuntu ou Debian
 :return: None

2026/01/22 21:00 9/10 Serveur de cache APT / cron-apt

Cyrille BIOT - https://cbiot.fr/dokuwiki/

 """

 mailRoot = 'root'
 aptSecurity = "find /etc/apt -type f -name '*.list' " \
 "| xargs cat " \
 "| grep -v \"^#\" | grep security"

 # Installation de cron-apt
 installPackage('cron-apt',distrib)

 # Création sources.list spécial sécurité
 log = open('/etc/apt/sources.list.d/security-primtuxACN.list', 'w')
 log.write('# Security Update. For Primtux Apt-cacher-ng.\n')
 log.flush()
 c = subprocess.call(aptSecurity, stdout=log, stderr=log, shell=True)

 # Configuration d'une action dans la conf de cron-apt
 # /etc/cron-apt/action.d/5-primtuxACN-security
 fichier = open('/etc/cron-apt/action.d/5-primtuxACN-security', "w")
 fichier.write("upgrade -y -o APT::Get::Show-Upgraded=true\n")
 fichier.write("OPTIONS=\"-o quiet=1 -o APT::Get::List-Cleanup=false -o "
 "Dir::Etc::SourceList=/etc/apt/sources.list.d/security-
primtuxACN.list "
 "-o Dir::Etc::SourceParts=\\\"/dev/null\\\"\"\n")
 fichier.write("MAILTO=\"{}\"\n".format(mailRoot))
 fichier.write("MAILON=\"always\"\n")
 fichier.close()

 print("Dès lors, le système installera les mises à jour de sécurité,
toutes les nuits à 4 heures.")

 return None

def main():
 """
 Lancement du script
 :return: None
 """
 # Défnition du port par defaut d'ACN
 portACN = 3142
 # Recupere le type de distribution faisant tourner le script
 distrib = baseDebian()

 choixInstall = clientServeur()
 if choixInstall.lower() == 'serveur':
 ipServeur = ipRecuperation()
 installServeur(ipServeur, portACN, distrib)
 else:
 # Installation client

Last update: 2020/02/08 23:38 python:acn-py-installer https://cbiot.fr/dokuwiki/python:acn-py-installer?rev=1581205108

https://cbiot.fr/dokuwiki/ Printed on 2026/01/22 21:00

 portSelection(portACN)
 ip = ipRecuperation()
 ipServeur = chercherServeurACN(ip, portACN)
 ipServeur = validerIpServeurACN(ipServeur)
 installClient(ipServeur,portACN)

 # Que ce sont pour l'un ou l'autre, install cron-apt auto securité
 installCronApt(distrib)
 return None

"""
 Boucle main()
"""
if __name__ == "__main__":
 # execute only if run as a script
 main()

Liens

Le paquet sous DEBIAN SID
Homepage Apt-cacher-ng

From:
https://cbiot.fr/dokuwiki/ - Cyrille BIOT

Permanent link:
https://cbiot.fr/dokuwiki/python:acn-py-installer?rev=1581205108

Last update: 2020/02/08 23:38

https://packages.debian.org/fr/sid/apt-cacher-ng
https://www.unix-ag.uni-kl.de/~bloch/acng/
https://cbiot.fr/dokuwiki/
https://cbiot.fr/dokuwiki/python:acn-py-installer?rev=1581205108

	Serveur de cache APT / cron-apt
	Les avantages d'APT-CACHER-NG
	Configurations du script
	Installation du paquet :
	Configuration, côté client

	Le script
	Liens

