
2026/01/28 12:44 1/5 Sécuriser un serveur SSH

Cyrille BIOT - https://cbiot.fr/dokuwiki/

Sécuriser un serveur SSH

Vous utilisez ssh pour vous connecter à votre serveur ou PC depuis l'extérieur et donc vous avez
ouvert via une règle NAT/PAT le port de votre box pour la rendre accessible depuis l'extérieur. Ou
vous avez un serveur (dédié ou vps) que vous administrez en ssh.

Voilà quelques règles de base à respecter pour limiter les intrus tapant à votre porte…

Bien que fail2ban utilise des règles iptables, nous n'aborderons pas iptables ici. Mais il est
conseillé d'avoir un parefeu en plus qui gère la totalité des connexions au serveur / PC.

Le numéro du port ssh modifié donné en exemple est bien sûr à adapter ;)

1. Changer le port ssh par défaut

Sur le serveur

serveurProliant@serveur# nano /etc/ssh/sshd_config
Port 22

changer en

Port 6789

(port : tous les ports non utilisés de 1024 à 65535)

Redémarrer le service SSH

serveurProliant@serveur# systemctl restart ssh

Dès lors pour se connecter , on précisera le numéro du port

serveurProliant@serveur# ssh login@serveur.ext -p 6789

Si Box / Routeur En local, rien de plus à faire. Reste maintenant à rediriger le port 22 de votre box
au port 6789 de votre serveur/PC. Pour cela, section administration, et modifier la règle comme dans
l'image ci-dessous (pour une livebox pro, mais sensiblement identique pour toutes les box).

Dès lors se connecter depuis l'extérieur

serveurProliant@serveur# ssh login@serveur.ext -p 6789

2. S'identifier par clef SSH et non par mot de passe

Sur le client :

Last update: 2019/07/17 17:24 ssh-fail2ban https://cbiot.fr/dokuwiki/ssh-fail2ban?rev=1562257672

https://cbiot.fr/dokuwiki/ Printed on 2026/01/28 12:44

serveurProliant@serveur$ ssh-keygen
Your identification has been saved in /home/$USER/.ssh/id_rsa cat
~/.ssh/id_rsa.pub

Envoyer la clef au serveur

serveurProliant@serveur# cat ~/.ssh/id_rsa.pub | ssh login@serveur.ext -p
6789 “mkdir -p ~/.ssh && cat » ~/.ssh/authorized_keys”

Dès lors on se connectera avec le mot de passe du trousseau de clefs et non avec celui du compte
ssh. Le mot de passe ssh ne transitera alors plus sur le réseau.

3. Supprimer l'identification par mot de passe

Lié inévitablement à l'étape précédente, on bloque les identifications par mot de passe et on accepte
que celles via des trousseaux de clefs.

serveurProliant@serveur# nano /etc/ssh/sshd_config
Modifiez ou ajoutez la ligne suivante
PasswordAuthentication no

Redémarrer le service ssh

serveurProliant@serveur# systemctl restart ssh

4. Limiter la connexion à certains users

On définira ici que les utilisateurs qui ont le droit à se connecter en ssh.

Éditer le fichier de configuration

serveurProliant@serveur# nano /etc/ssh/sshd_config

Et rajouter la ligne suivante (par défaut, elle est absente)

AllowUsers nom_utilisateur_autorisé

(si plusieurs utilisateurs, les séparer par un espace)

5. Installer et configurer fail2ban

Programme qui va analyser les logs (ssh, apache, nginx, ftp…) et rechercher les tentatives de
connexions infructueuses afin de les bloquer/bannir (en ajoutant des règles au firewall). iptables). Il
met donc “en prison” les services et va gérer leur connexion (les laisse passer ou les bannit)

2026/01/28 12:44 3/5 Sécuriser un serveur SSH

Cyrille BIOT - https://cbiot.fr/dokuwiki/

Installer fail2ban

serveurProliant@serveur# apt-get install fail2ban

L'installer ne suffit pas, il faut dès lors, peaufiner sa configuration.

Configurer fail2ban pour ssh <code bash>$ cat /etc/fail2ban/jail.d/mon_serveur.conf
[DEFAULT] findtime = 3600 bantime = 86400 maxretry = 3 [sshd] port = 6789 [sshd-ddos]
port = 6789</code> Explications findtime : on regarde dans les archives de log sur une
période de 1 heure (3600 secondes). Si vous mettez une valeur trop haute, vous risquez
une charge système très importante… Si on trouve dans ces logs l'IP 3 fois mal identifiée
(maxretry=3), on la bannit (ici 86400 secondes soit 1 journée). Pendant donc une journée,
cette IP sera donc rejetée automatiquement. Bien sûr, il est conseillé, si vous avez une IP
fixe, d'ignorer cette règle sur cette IP (afin de vous éviter de mauvaises surprises (vous ne
pourrez plus vous connecter si vous bous plantez…)) et d'ajouter cette directive dans la
section [DEFAULT]. Faire de même bien sûr avec la boucle locale : 127.0.0.1 <code
bash>ignoreip = 127.0.0.1 123.45.67.89</code> (remplacé 123.45.67.89 par votre IP ou
vos IPs (dans ce cas séparées par un espace) Vérifier que la prison est bien effective
<code bash>serveurProliant@serveur# fail2ban-client status Status |- Number of jail: 2 `-
Jail list: sshd, sshd-ddos</code> Savoir si des IP ont été bannises <code
bash>serveurProliant@serveur# fail2ban-client status sshd Status for the jail: sshd |-
Filter | |- Currently failed: 0 | |- Total failed: 0 | `- File list: /var/log/auth.log `- Actions |-
Currently banned: 41 |- Total banned: 41 `- Banned IP list: 103.110.89.148 103.85.18.99
109.110.52.77 111.223.73.20 122.195.200.148 153.36.236.35 153.36.240.126
153.36.242.114 159.65.144.233 159.65.7.56 163.172.106.114 164.132.225.250
167.99.200.84 167.99.75.174 176.31.253.55 180.250.183.154 180.96.14.98 181.99.48.120
183.131.82.100 183.131.82.99 187.60.97.209 190.119.190.122 192.168.1.10
193.32.163.182 200.0.236.210 206.189.197.48 206.248.181.122 210.206.179.221
222.76.119.165 23.101.133.58 46.105.244.1 5.135.223.35 51.75.247.13 52.172.44.97
54.39.196.199 61.216.15.225 73.144.161.209 83.147.102.62 87.99.77.104 91.134.227.180
92.91.60.249 serveurProliant@serveur# fail2ban-client status sshd-ddos Status for the
jail: sshd-ddos |- Filter | |- Currently failed: 0 | |- Total failed: 0 | `- File list:
/var/log/auth.log `- Actions |- Currently banned: 0 |- Total banned: 0 `- Banned IP list:
</code> Bannir une IP manuellement fail2ban-client set sshd banip 12.34.56.78 Débannir
une IP manuellement fail2ban-client set sshd unbanip 12.34.56.78 6. Gérer les
notifications. 6.1. Avoir un rapport des IP bannis Voici un petit script à position sur un
cron (ici envoyer 2 fois par jour) donnant le statut des jails. # Rapport de fail2ban 15 6,19
* * * /home/admin/scripts/fail2ban-status-ban.sh Et le script serveurProliant@serveur# cat
fail2ban-status-ban.sh #!/bin/sh # Script de rapport fail2ban # Prend en compte tous les
jails # dest=votre.login@domaine.ext msg=$(fail2ban-client status | sed -n 's/,g;s/.*Jail
list:p' | xargs -n1 fail2ban-client status); echo “$msg” | mail -s “Rapport Fail2ban De
$(hostname -s) $(date)” $dest 6.2 Avoir un rapport de connexion SSH Un autre script pour
être notifié d'une connexion SSH sur son serveur (notification par mail ou par SMS (pour
ceux ayant un forfait free, même à 2 €). Permet également dans la configuration par SMS
d'ignorer une IP donnée (ou plusieurs) afin que le téléphone ne passe pas son temps à
sonner. Etre notifié par mail d'une connexion serveurProliant@serveur# cd /etc/ssh/ ; ls
moduli ssh_host_ecdsa_key ssh_host_ed25519_key.pub ssh_config ssh_host_ecdsa_key.pub
ssh_host_rsa_key sshd_config ssh_host_ed25519_key ssh_host_rsa_key.pub Dans ce
répertoire, créer le script suivant, remplacer $DEST par votre mail.
serveurProliant@serveur# nano sshrc #!/bin/sh $DEST=votre.mail@domaine.ext
DATE=$(date “+%d.%m.%Y–%Hh%Mm”) IP=$(echo $SSH_CONNECTION | awk '{print $1}')

Last update: 2019/07/17 17:24 ssh-fail2ban https://cbiot.fr/dokuwiki/ssh-fail2ban?rev=1562257672

https://cbiot.fr/dokuwiki/ Printed on 2026/01/28 12:44

REVERSE=$(dig -x $IP +short) MSG=“Connexion de $(echo $USER) sur $(hostname -s) IP:
$IP ReverseDNS: $REVERSE Date: $DATE” echo “$MSG” | mail -s “$(echo $DATE) :
Connexion de $(echo $USER) sur $(hostname -s)” $DEST Ce script doit apartenir à root
mais être accessible en lecture à tous. serveurProliant@serveur# ls -la … -rw-r–r– 1 root
root 54 Jul 4 11:02 sshrc Etre notifié par mail ET SMS (free seulement) On devra créer 3
fichiers (les deux derniers sont positionnés dans un répertoire /home/TOTO/scripts/ ; à
adapter à votre configuration) - /etc/ssh/sshrc - /home/TOTO/scripts/send-notification-
data.txt - /home/TOTO/scripts/send-notification.sh Pour des raisons de sécurité, le fichier
send-notification-data.txt ne devra être lisible que par root, il contient les données
d'identification free et les données nécessaires au script. Si vous ne souhaitez pas
recevoir de notification depuis une ou des IP(s) précise(s), mettre cela dans la variable
$IP_AUTHORIZED. La variable $DEST contient le mail de notification.
serveurProliant@serveur# cat send-notification-data.txt ## ## IP A AUTORISER SANS
ALERTE SMS ## # Décommenter cette variable et saisir l'IP de connexion permise sans
alerte # SMS. Si plusieurs IP, les séparer d'un espace IP_AUTHORIZED='12.345.67.890'; ##
NOTIFICATION SMS ## # Login utilisateur / identifiant Free Mobile (celui utilisé pour
accéder à # l'Espace Abonné) USER_LOGIN=“123456789” # Clé d'identification (générée et
fournie par Free Mobile via l'Espace Abonné, # “Mes Options” :
https://mobile.free.fr/moncompte/index.php?page=options) API_KEY=“aBcDeFgHiJkL” ##
NOTIFICATION MAIL ## # Nom du destinaire de la notification par mail
DEST=mon.mail@domaine.com Adpater les droits, très important :
serveurProliant@serveur# chmod 600 send-notification-data.txt serveurProliant@serveur#
ls -la … -rw——- 1 admin 1007 644 Jul 4 10:57 send-notification-data.txt On incluera ce
fichier dans le script bash afin qu'on ne puisse pas lire son contenu. Enfin le script La
fonction d'envoi via l'API de free est à l'origine ici :
https://github.com/C-Duv/freemobile-smsapi-client [DUVERGIER Claude
(http://claude.duvergier.fr)] Modifiée pour les besoins. serveurProliant@serveur# cat
send-notification.sh #!/bin/sh # Données utilisateur . /home/admin/TOTO/send-notification-
data.txt #
==
DATE=$(date “+%d.%m.%Y–%Hh%Mm”) IP=$(echo $SSH_CONNECTION | awk '{print $1}')
REVERSE=$(dig -x $IP +short) MSG=“Connexion de $(echo $USER) sur $(hostname -s) IP:
$IP ReverseDNS: $REVERSE Date: $DATE” ## ## La fonction d'envoi SMS ##
fctEnvoiSms() { # Script d'envoi de notification SMS via l'API Free Mobile #
https://github.com/C-Duv/freemobile-smsapi-client # Auteur:v # modification
crust@crust.ovh readonly PROGNAME=$(basename $0) readonly PROGDIR=$(readlink -m
$(dirname $0)) usage_error () { echo “ERROR: ${1}” >&2 echo “” usage_help exit 1 }
usage_help () { echo “Possible usages:” echo “* ${PROGNAME} [options] [message]”
echo “* echo \”All your base are belong to us\“ | ${PROGNAME} [options]” echo “” echo
“Options:” echo “* -c file specify configuration file” echo “* -h display this help” }
CONFIG_FILE=“” while getopts “c:h” option; do case “$option” in c)
CONFIG_FILE=${OPTARG} ;; :) usage_error “Invalid arguments” ;; h) usage_help ; exit 0 ;;
esac done shift $1) ## ## Configuration système ## # Caractère de fin de ligne #
(http://en.wikipedia.org/wiki/Percent-encoding#Character_data) NEWLINE_CHAR=“%0D” #
Valeurs possibles : %0A, %0D et %0D%0A # URL d'accès à l'API
SMSAPI_BASEURL=“https://smsapi.free-mobile.fr” # Action d'envoi de notification
SMSAPI_SEND_ACTION=“sendmsg” # Texte qui sera ajouté AVANT chaque message
envoyé MESSAGE_HEADER=“$(date ”+%d.%m.%Y–%Hh%Mm“): ” # Texte qui sera ajouté
APRÈS chaque message envoyé MESSAGE_FOOTER=“ – $(hostname -s)” ## ## Fichier de
configuration ## if [-n “${CONFIG_FILE}”]; then if [-e “${CONFIG_FILE}”]; then .
“${CONFIG_FILE}” else echo “ERROR: Configuration file \”${CONFIG_FILE}\“ does not

https://mobile.free.fr/moncompte/index.php?page=options
https://github.com/C-Duv/freemobile-smsapi-client
http://claude.duvergier.fr
https://github.com/C-Duv/freemobile-smsapi-client
http://en.wikipedia.org/wiki/Percent-encoding#Character_data
https://smsapi.free-mobile.fr

2026/01/28 12:44 5/5 Sécuriser un serveur SSH

Cyrille BIOT - https://cbiot.fr/dokuwiki/

exists.” >&2 exit 2 fi else if [-e “${PROGDIR}/.freemobile-smsapi”]; then .
“${PROGDIR}/.freemobile-smsapi” elif [-e “${HOME}/.freemobile-smsapi”]; then .
“${HOME}/.freemobile-smsapi” fi fi ## ## Vérifications des paramètres requis ## if [-z
“${USER_LOGIN}”] \ || [-z “${API_KEY}”] \ || [-z “${SMSAPI_BASEURL}”] \ || [-z
“${SMSAPI_SEND_ACTION}”] \ ; then echo “ERROR: Either USER_LOGIN, API_KEY,
SMSAPI_BASEURL or ” \ “SMSAPI_SEND_ACTION is not set” >&2 exit 2 fi ## ## Traitement
du message ## MESSAGE_TO_SEND=“” if [“${1}”]; then # Message en tant qu'argument
de la ligne de commande MESSAGE_TO_SEND=“${1}” else # Message lu de STDIN while
read line do MESSAGE_TO_SEND=“${MESSAGE_TO_SEND}${line}\n” done
MESSAGE_TO_SEND=${MESSAGE_TO_SEND%“\n”} # Retire le dernier saut de ligne fi #
Assemble header, message et footer
FINAL_MESSAGE_TO_SEND=“${MESSAGE_HEADER}${MESSAGE_TO_SEND}${MESSAGE_FO
OTER}” ## ## Appel à l'API (envoi) ## # echo “Will send the following to
${USER_LOGIN}:” #DEBUG # echo “${FINAL_MESSAGE_TO_SEND}” #DEBUG # Converts
newlines to $NEWLINE_CHAR FINAL_MESSAGE_TO_SEND=$(\ echo -n
“${FINAL_MESSAGE_TO_SEND}” | \ sed '{:q;N;s/\n/'${NEWLINE_CHAR}'/g;t q}'\) # echo
“Newline encoded message:” #DEBUG # echo “${FINAL_MESSAGE_TO_SEND}” #DEBUG #
Particularités de l'appel de curl et la/les options associées : # * Renvoi le code réponse
HTTP uniquement : # –write-out “%{http_code}” –silent –output /dev/null #
HTTP_STATUS_CODE=$(\ curl \ –write-out “%{http_code}” \ –silent \ –output /dev/null \ –get
“${SMSAPI_BASEURL}/${SMSAPI_SEND_ACTION}” \ –data “user=${USER_LOGIN}” \ –data
“pass=${API_KEY}” \ –data “msg=${FINAL_MESSAGE_TO_SEND}” \) # Codes réponse
HTTP possibles # 200 : Le SMS a été envoyé sur votre mobile. # 400 : Un des paramètres
obligatoires est manquant. # 402 : Trop de SMS ont été envoyés en trop peu de temps. #
403 : Le service n'est pas activé sur l'espace abonné, ou login / clé # incorrect. # 500 :
Erreur côté serveur. Veuillez réessayez ultérieurement. if [“${HTTP_STATUS_CODE}” -eq
200]; then # echo “API responded with 200: exiting with 0” #DEBUG exit 0 echo “Error:
API responded with ${HTTP_STATUS_CODE}” else exit 1 fi } ## ## ENVOI SMS / MAIL ##
if echo “$IP” | egrep $IP_AUTHORIZED ; then echo “MATCH NO SEND SMS”; else
fctEnvoiSms “Connexion SSH de $(echo $USER) ; IP : $(echo $IP)” fi # QUOI QU'IL EN SOIT
ON ENVOIE UN MAIL echo “$MSG” | mail -s “$(echo $DATE) : Connexion de $(echo $USER)
sur $(hostname -s)” $DEST Après tout cela, vous devriez à a voir quelque chose qui tient
la route… Par contre, un iptable en toile de fond reste bien sûr nécessaire….

1)

OPTIND-1

From:
https://cbiot.fr/dokuwiki/ - Cyrille BIOT

Permanent link:
https://cbiot.fr/dokuwiki/ssh-fail2ban?rev=1562257672

Last update: 2019/07/17 17:24

https://cbiot.fr/dokuwiki/
https://cbiot.fr/dokuwiki/ssh-fail2ban?rev=1562257672

	Sécuriser un serveur SSH
	1. Changer le port ssh par défaut
	2. S'identifier par clef SSH et non par mot de passe
	3. Supprimer l'identification par mot de passe
	4. Limiter la connexion à certains users
	5. Installer et configurer fail2ban

